Coupling aerosol optics to the MATCH (v5.5.0) chemical transport model and the SALSA (v1) aerosol microphysics module
نویسندگان
چکیده
A new aerosol-optics model is implemented in which realistic morphologies and mixing states are assumed, especially for black carbon particles. The model includes both external and internal mixing of all chemical species, it treats externally mixed black carbon as fractal aggregates, and it accounts for inhomogeneous internal mixing of black carbon by use of a novel “core-grey-shell” model. Simulated results of aerosol optical properties, such as aerosol optical depth, backscattering coefficients and the Ångström exponent, as well as radiative fluxes are computed with the new optics model and compared with results from an older opticsmodel version that treats all particles as externally mixed homogeneous spheres. The results show that using a more detailed description of particle morphology and mixing state impacts the aerosol optical properties to a degree of the same order of magnitude as the effects of aerosol-microphysical processes. For instance, the aerosol optical depth computed for two cases in 2007 shows a relative difference between the two optics models that varies over the European region between −28 and 18 %, while the differences caused by the inclusion or omission of the aerosol-microphysical processes range from −50 to 37 %. This is an important finding, suggesting that a simple optics model coupled to a chemical transport model can introduce considerable errors affecting radiative fluxes in chemistry-climate models, compromising comparisons of model results with remote sensing observations of aerosols, and impeding the assimilation of satellite products for aerosols into chemical-transport models.
منابع مشابه
MATCH-SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation
We have implemented the sectional aerosol dynamics model SALSA (Sectional Aerosol module for Large Scale Applications) in the European-scale chemistrytransport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCHSALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed...
متن کاملIntegration of prognostic aerosol-cloud interactions in a chemistry transport model coupled offline to a regional climate model
To reduce uncertainties and hence to obtain a better estimate of aerosol (direct and indirect) radiative forcing, next generation climate models aim for a tighter coupling between chemistry transport models and regional climate models and a better representation of aerosol–cloud interactions. In this study, this coupling is done by first forcing the Rossby Center regional climate model (RCA4) w...
متن کاملSALSA – a Sectional Aerosol module for Large Scale Applications
The sectional aerosol module SALSA is introduced. The model has been designed to be implemented in large scale climate models, which require both accuracy and computational efficiency. We have used multiple methods to reduce the computational burden of different aerosol processes to optimize the model performance without losing physical features relevant to problematics of climate importance. T...
متن کاملTropospheric Aerosol Size Distributions Simulated by Three Online Global Aerosol Models Using the M7 Microphysics Module
Tropospheric aerosol size distributions are simulated by three online global models which employ exactly the same aerosol microphysics module, but differ in many aspects such as model meteorology, natural aerosol emission, sulfur chemistry, and deposition processes. The main purpose of this study is to identify the influence of these differences on the aerosol simulation. Number concentrations ...
متن کاملDevelopment and Testing of an Aerosol-Stratus Cloud Parameterization Scheme for Middle and High Latitudes
The aim of this new project is to develop an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary layer clouds. Our approach is to create, test, and implement a bulk-microphysics/aerosol model using data from Atmospheric Radiation Measurement (ARM) Cloud and Radiation Testbed (CART) sites and large-eddy simulation (LES) explicit bin-resolving aerosol/microphysics mode...
متن کامل